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INTRODUCTION

Over the past decade, a flurry of research activity has oc-
curred in producing polymeric nanocomposites by incorpo-
rating inorganic nanoparticles.1 The unique properties of
nanoparticles are due to quantum-confinement or surface
effects that become operative on the nanoscale.2 Since the
pioneering work of Gleiter,3 innumerable studies have been
made to understand the physicochemical aspects of nano-
composites.4–7 A variety of metal oxides could be dispersed
into poly(methyl methacrylate) (PMMA), to produce nano-
composites with enhanced mechanical strength and thermal
stability together with the ease of processibility and flexibil-
ity.8–11 In this note, we report the usefulness of �-Fe2O3

nanoparticles prepared by the combustion method12,13 to
prepare nanocomposite films of PMMA by the solvent cast-
ing method. These materials have been characterized by
X-ray diffraction (XRD), Fourier transform infrared (FTIR),
scanning electron microscopy (SEM), and thermal analysis
techniques, viz., thermogravimetric analysis (TGA) and dif-
ferential thermal analysis (DTA). The nanocomposites show
increased thermal stability as the amount of �-Fe2O3 in the
PMMA matrix increased.

EXPERIMENTAL

Materials

Poly(methyl methacrylate), ferrous chloride, chloroform, ac-
etone, ferric acetylacetonate, and polyethylene glycol-4000
were all of reagent grade samples purchased from S. D. Fine
Chemicals, Mumbai, India.

Preparation of nanocomposite films

The �-Fe2O3 nanoparticles in the size range of 10–100 nm
were prepared using the combustion method proposed ear-
lier.12,13 In brief, ferric acetylacetonate was mixed with poly-
ethylene glycol-4000 in the mass ratio of 1 : 5 and ground to
produce uniform size particles in a pestle and mortar. The
resultant solid was taken in a silica crucible and heated in
air. Initially, polyethylene glycol was melted, frothed, and
finally ignited to form �-Fe2O3 nanoparticles. Upon cooling
to room temperature, no traces of carbon impurities were
left in the final residue of �-Fe2O3

A known mass of PMMA was dissolved in 100 mL of
chloroform and the mixture was kept for 12 h for complete
dissolution. The solution was transferred to a rotary evapo-
rator. The �-Fe2O3 powder 2, 5, and 10 mass % was taken in
chloroform and sonicated. It was then mixed with PMMA in
solution in a rotary evaporator maintained at 80°C. Chloro-
form was evaporated by vacuum at 200 rpm. The derived
nanocomposites were designated as PMMA-2, PMMA-5,
and PMMA-10 to represent 2, 5, and 10 mass % of the
dispersed �-Fe2O3, respectively. Pure PMMA is designated
as PMMA-0.

RESULTS AND DISCUSSION

In the present study, nanocomposite films of PMMA loaded
with varying amounts of �-Fe2O3 were prepared by evapo-
rating chloroform in a rotary evaporator. The XRD data
presented in Figure 1(a) revealed a sharp peak at 2� � 42o

due to the crystalline nature of �-Fe2O3. After incorporation
of �-Fe2O3 nanoparticles into PMMA matrix, the observed
sharp peak is masked, indicating a molecular level disper-
sion of �-Fe2O3 into the PMMA matrices [see Figs. 1(b)—
(d)]. Similar observations are seen for pure PMMA matrix
due to its noncrystalline nature [see Fig. 1 (d)].

FTIR studies have been performed to understand the pos-
sible chemical interactions between �-Fe2O3 and PMMA.
FTIR spectra of pure PMMA displayed in Figure 2 (d) is
quite different from those of �-Fe2O3 loaded nanocompos-
ites [Figs. 2(a)—(c)]. The characteristic peak at 371 cm�1 in
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pure PMMA is absent in all the composites. Similarly, the
characteristic peaks observed at 445 and 550 cm�1 for
�-Fe2O3 due to Fe–O vibrations have disappeared in all the
composite films. However, a slight shift in peak observed at
550 cm�1 in all the nanocomposites compared to PMMA-0
[see Figs. 2(b)—(d)] may be due to the possible H-bond type
interactions between �-Fe2O3 nanoparticles and PMMA.

Morphology of the nanocomposites studied by SEM at
low and high resolutions are presented, respectively, in
Figures 3(a) and (b) for PMMA-2. At high resolution [Fig.
3(b)], the deformation of PMMA is prevalent with a neck-

like structure.14 Similar and more elongated structures are
also observed in PMMA-5 and PMMA-10 nanocomposites
as shown in Figures 4(a) and (b) and 5(a) and (b) both at low
and high resolutions, respectively. Thus, it appears that by
adding higher amounts of �-Fe2O3 greater deformation of

Figure 1 XRD tracings of (a) pure �-Fe2O3, (b) PMMA-2, (c)
PMMA-5, (d) PMMA-10, and (e) PMMA-0 nanocomposite
films.

Figure 2 FTIR Spectra of (a) PMMA-0, (b) PMMA-2, (c) PMMA-5, and (d) PMMA-10 nanocomposite films

Figure 3 SEM photographs at (a) low resolution and (b)
high resolution for PMMA-2 nanocomposite films.
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Figure 4 SEM photographs at (a) low resolution and (b)
high resolution for PMMA-5 nanocomposite films.

Figure 5 SEM photographs at (a) low resolution and (b)
high resolution for PMMA-10 nanocomposite films.

Figure 6 TGA/DTA tracings of (a) PMMA-0, (b) PMMA-2, (c) PMMA-5, and (d) PMMA-10 nanocomposite films.
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the PMMA matrix is possible due to increased filling of the
pores in the matrix.

In an effort to understand the thermal properties of nano-
composites, both TGA and DTA experiments have been
performed on pure PMMA and �-Fe2O3 loaded nanocom-
posite films. The TGA tracing of pure PMMA shows stability
up to 300°C, which starts to degrade at 315°C, showing a
continuous weight loss [see Fig. 6(a)]. For PMMA-2 films,
TGA tracings [see Fig. 6(b)] indicate that degradation tem-
perature is identical to pure PMMA (� 315°C). DTA curves
show a hump at 270°C, possibly due to phase transition of
�-Fe2O3 to �-Fe2O3. Thus, there is not much improvement in
the thermal stability in PMMA-2, but, in PMMA-5, the TGA
curve [Fig. 6(c)] shows the onset of decomposition temper-
ature around 330°C. On the other hand, TGA/DTA curves
for the PMMA-10 sample displayed in Figure 6(d) indicate
increased thermal stability with a highest degradation tem-
perature of 380°C. However, a dip observed at 75°C may be
due to the presence of moisture in the sample. It is well
known that �-Fe2O3 nanoparticles absorb moisture and,
since PMMA-10 contains a higher amount of �-Fe2O3, higher
moisture content is present in PMMA-10. This is also con-
firmed by TGA.

CONCLUSION

Preliminary results of this study indicate that it is possible to
disperse nanoparticles of �-Fe2O3 into PMMA matrix. Fur-
ther, the thermal stability of nanocomposites increase with
an increasing amount of �-Fe2O3. The synthesis of �-Fe2O3

by the combustion method is unique since the nanoparticles

can be obtained in the size range of 10–100 nm in a single
step in a few minutes. However, other methods available in
the literature involve a multistep process and particles in
nanosize range are difficult to obtain. However, our interest
is to study the effect of the addition of �-Fe2O3 on the
thermal stability of the nanocomposite. Other property mea-
surements such as magnetic and electrical data are in
progress.
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